2003 Vol. 5, No. 10 1713–1715

High Enantioselectivity in Rhodium-Catalyzed Allylic Alkylation of 1-Substituted 2-Propenyl Acetates

Tamio Hayashi,* Atsushi Okada, Toshimasa Suzuka, and Motoi Kawatsura

Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan

thayashi@kuchem.kyoto-u.ac.jp

Received February 28, 2003

ABSTRACT

R = Ph, C₆H₄Me-4, C₆H₄CF₃-4, C₆H₄CI-4, 1-naphthyl, CH₂CH₂Ph dpm = dipivaloylmethanato

Rhodium-catalyzed asymmetric allylic alkylation of 1-substituted 2-propenyl acetates with dimethyl malonate proceeded with high enantioselectivity in the presence of cesium carbonate as a base and a rhodium catalyst generated from $Rh(dpm)(C_2H_4)_2$ (dpm = dipivaloylmethanato) and a chiral phosphino-oxazoline whose basic skeleton is axially chiral binaphthyl to give branch alkylation products in greater than 90% ee.

Palladium-catalyzed asymmetric allylic alkylation is one of the most frequently examined asymmetric reactions catalyzed by transition metal complexes because of its easy manipulation, high catalytic activity, and high enantioselectivity.¹ Recently, other transition metals, including molybdenum² and iridium³ have also been reported to catalyze the asymmetric alkylation. In the reaction, which proceeds through monosubstituted π -allyl intermediates, the regionelectivity in forming a branch chiral isomer is higher with molybdenum and iridium catalysts than with palladium catalysts. Rhodium catalysts⁴ have some unique features in the allylic alkylation reactions. Recently, Evans has reported⁵ that the regiochemistry and the stereochemistry of the starting allylic esters are conserved in the allylic substitution products. Namely, the rhodium-catalyzed substitution takes place at the carbon substituted with the leaving group with net retention of configuration. It seems that the high regio- and stereospecificity in the rhodium-catalyzed system are not compatible with the catalytic asymmetric synthesis using a chiral rhodium catalyst, and as a result, there have been very few reports on the use of chiral rhodium catalysts for the asymmetric allylic substitution reactions. We succeeded in the rhodium-catalyzed asymmetric allylic alkylation with

⁽¹⁾ For reviews: (a) Trost, B. M.; Chulbom, L. In Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed.; VCH: New York, 2000; p 593. (b) Pfaltz, A.; Lautens, M. In Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999; Vol. 2, Chapter 24. (c) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395. (d) Hayashi, T. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH: New York, 1993; p 325. (e) Frost, C. G.; Howarth, J.; Williams, J. M. J. Tetrahedron: Asymmetry 1992, 3, 1089.

^{(2) (}a) Trost, B. M.; Hachiya, I. J. Am. Chem. Soc. 1998, 120, 1104. (b) Glorius, F.; Pfaltz, A. Org. Lett. 1999, 1, 141. (c) Kaiser, N.-F. K.; Bremberg, U.; Larhed, M.; Moberg, C.; Hallberg, A. Angew. Chem., Int. Ed. 2000, 39, 3596. (d) Malkov, A. V.; Spoor, P.; Vinader, V.; Kocovsky, P. Tetrahedron Lett. 2001, 42, 509. (e) Trost, B. M.; Dogra, K.; Hachiya, I.; Emura, T.; Hughes, D. L.; Krska, S.; Reamer, R. A.; Palucki, M.; Yasuda, N.; Reider, P. J. Angew. Chem., Int. Ed. 2002, 41, 1929. See also: Lloyd-Jones, G. C.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1995, 34, 462.

^{(3) (}a) Janssen, J. P.; Helmchen, G. *Tetrahedron Lett.* **1997**, *38*, 8025. (b) Bartels, B.; Helmchen, G. *Chem. Commun.* **1999**, 741. (c) Bartels, B.; Garcia-Yebra, C.; Rominger, F.; Helmchen, G. *Eur. J. Inorg. Chem.* **2002**, 2569. See also: Takeuchi, R.; Kashio, M. *J. Am. Chem. Soc.* **1998**, *120*, 8647

^{(4) (}a) Tsuji, J.; Minami, I.; Shimidzu, I. Tetrahedron Lett. 1984, 25,
5157. (b) Minami, I.; Shimidzu, I.; Tsuji, J. J. Organomet. Chem. 1985,
296, 269. (c) Takeuchi, R.; Kitamura, N. New J. Chem. 1998, 659.

^{(5) (}a) Evans, P. A.; Nelson, J. D. *Tetrahedron Lett.* **1998**, *39*, 1725. (b) Evans, P. A.; Nelson, J. D. *J. Am. Chem. Soc.* **1998**, *120*, 5581. (c) Evans, P. A.; Kennedy, L. J. *Org. Lett.* **2000**, *2*, 2213. (d) Evans, P. A.; Kennedy, L. J. *J. Am. Chem. Soc.* **2001**, *123*, 1234. (e) Evans, P. A.; Robinson, J. E. *J. Am. Chem. Soc.* **2001**, *123*, 4609.

high enantioselectivity by a rational modification of the reaction conditions and fine-tuning of the ligands on the rhodium.

First, we examined the rhodium-catalyzed allylic alkylation of racemic 1-phenyl-2-propenyl acetate (1) in the presence of a chiral rhodium catalyst coordinated with (*S*)-*i*-Pr-phox ((*S*)-2a)^{7,8} under one of the standard conditions used for the palladium-catalyzed reactions (Scheme 1). As it was expected

3a: Rh(acac)(C₂H₄)₂ (acac = acetylacetonato)

3b: $Rh(dpm)(C_2H_4)_2$ (dpm = dipivaloylmethanato)

3c: $Rh(hfac)(C_2H_4)_2$ (hfac = hexafluoroacetylacetonato)

3d: $Rh(dbm)(C_2H_4)_2$ (dbm = dibenzoylmethanato)

from the high stereospecificity reported by Evans, the enantioselectivity was low. Typically, the reaction of 1 (0.40 mmol) with dimethyl sodiomalonate (1.6 mmol) in the presence of 5 mol % Rh(acac)(C_2H_4)₂ (3a) and (S)-2a in THF (2.0 mL) at 40 °C for 12 h gave 90% yield of the allylic alkylation product, which consists of regioisomers 4 and 5 in a ratio of 89:11, and the branch isomer 4 was obtained in 36% ee of the (R)-isomer (entry 1 in Table 1). Although the

enantioselectivity was this low, the formation of the nonracemic product indicates that the stereospecificity is not perfect, which is probably due to the equilibration between regio- and diastereoisomeric allyl-rhodium intermediates.

Considering that a longer lifetime of the allyl intermediate will give us a chance for higher enantioselectivity, we examined a stoichiometric reaction of a rhodium complex that was generated by mixing Rh(acac)((*S*)-*i*-Pr-phox) (6)⁹ with racemic acetate 1^{10,11} (Scheme 2). After the complex

was kept in THF at 40 °C for 30 min, dimethyl sodiomalonate was added to give (R)-4 in 71% ee and 5 in a ratio of 87:13. It follows that the catalytic reaction will produce the branch isomer 4, whose enantiomeric purity is as high as 71% if the lifetime of the allyl intermediate in the catalytic reaction is sufficiently long. Slow addition of the nucleophile over 48 h to the solution containing the 3a/(S)-i-Pr-phox (2a) catalyst and acetate 1 (entry 2) or the reaction in a high dilution condition (entry 3) gave (R)-4 in 66% ee, the ee value being close to that observed in the stoichiometric reaction. Thus, the enantioselectivity became higher with the

Table 1. Rhodium-Catalyzed Asymmetric Allylic Alkylation of Acetate 1 with Dimethyl Malonate^a

entry	ligand L*	[Rh]	solvent	base	yield (%) of ${\bf 4}$ and ${\bf 5}^b$	ratio of $4:5^c$	% ee 4 ^d
1	(S)- 2a	3a (acac)	THF	NaH	90	89:11	36 (R)
2^e	(S)-2a	3a (acac)	THF	NaH	63	87:13	66 (R)
3^f	(S)-2a	3a (acac)	THF	NaH	79	90:10	66 (R)
4	(S)-2a	3a (acac)	THF	Cs_2CO_3	91	91:9	45 (R)
5	(S)-2a	3a (acac)	dioxane	Cs_2CO_3	97	87:13	59 (R)
6	(S,R)- 2b	3a (acac)	dioxane	Cs_2CO_3	93	96:4	73 (S)
7	(S,S)- 2c	3a (acac)	dioxane	Cs_2CO_3	95	87:13	58 (R)
8	(S,R)- 2b	3b (dpm)	dioxane	Cs_2CO_3	98	97:3	90 (S)
9	(S,R)- 2b	3c (hfac)	dioxane	Cs_2CO_3	59	79:21	58 (S)
10	(S,R)- 2b	3d (dbm)	dioxane	Cs_2CO_3	76	89:11	67 (S)
11	(S,R)- 2b	3a (acac)	toluene	Cs_2CO_3	94	96:4	87 (S)
12	(S,R)- 2b	3b (dpm)	toluene	Cs_2CO_3	94	98:2	97 (S)
13g	(S,R)- 2b	3b (dpm)	toluene	Cs_2CO_3	73	99:1	97 (S)
14	(S,R)- 2b	3c (hfac)	toluene	Cs_2CO_3	64	92:8	81 (S)
15	(S,R)- 2b	3d (dbm)	toluene	Cs_2CO_3	75	97:3	87 (S)

^a All reactions were carried out with allyl acetate **1** (0.40 mmol), dimethyl malonate (1.6 mmol), base (1.6 mmol), and 5 mol % rhodium catalyst generated from a rhodium precursor **3** and a chiral ligand **2** in 2.0 mL of a solvent at 40 °C for 12 h under nitrogen. ^b Isolated yield by silica gel chromatography (hexane/ethyl acetate = 5:1). ^c Determined by ¹H NMR analysis of a crude reaction mixture. ^d Determined by HPLC analysis with a chiral stationary phase column (Chiralcel OJ (hexane/2-propanol = 93:7)). ^e Slow addition of dimethyl sodiomalonate over 48 h. ^f High dilution in 20 mL of THF for 40 h. ^g Catalyst = 1 mol %.

0rg. Lett., Vol. 5, No. 10, 2003

lower concentration of the nucleophile, which should prolong the lifetime of the allyl-rhodium intermediates. 12

Although slow addition or high dilution conditions increased the enantioselectivity, these methods are not convenient from a practical point of view because the reaction requires a longer reaction time and the yields are generally not sufficiently high. The use of cesium carbonate Cs₂CO₃ as a base in place of sodium hydride brought about higher enantioselectivity (entries 4 and 5).¹³ The higher enantioselectivity may be related to the weaker basicity of Cs₂CO₃, which will keep the concentration of the nucleophile lower, resulting in a longer lifetime of the allyl-rhodium intermediates. The reaction with phosphino-oxazoline ligand (S,R)axial-phox (2b),14 whose basic skeleton is axially chiral binaphthyl, was found to be more enantioselective than that with (S)-i-Pr-phox (2a). The reaction of acetate 1 with cesium carbonate and dimethyl malonate in dioxane in the presence of rhodium catalyst 3a/(S,R)-axial-phox (2b) gave (S)-4 in 73% ee and **5** in a ratio of 96:4 (entry 6).

One of the characteristic features of the rhodium catalysts used here is that they have an acetylacetonato-type ligand in addition to the phox ligand 2, which cannot be incorporated into the palladium catalysts due to the limitation of coordination number. Thus, modification of the acetylaceto-

nato ligand will give us a further chance for higher selectivity. Of the β -diketonato ligands examined, dipivaloylmethanato (dpm) ligand gave the best results. The reaction of acetate 1 with Cs₂CO₃ and dimethyl malonate in the presence of a rhodium catalyst generated from Rh(dpm)(C₂H₄)₂ (**3b**) and (*S*,*R*)-**2b** in dioxane gave 98% yield of (*S*)-**4** (90% ee) and **5** in a 97:3 ratio (entry 8). The enantioselectivity was further improved (up to 97% ee) by carrying out the reaction in toluene with the rhodium catalyst of **3b**/(*S*,*R*)-**2b** (entry 12). The regioselectivity in giving **4** is also higher (**4**:**5** = 98:2). With the rhodium catalyst precursors **3c** and **3d** coordinated with hfac and dbm, respectively, the enantioselectivity was not higher than that with the acac-rhodium catalyst **3a** (entries 9, 10, 14, and 15).

Using Rh(dpm)(C_2H_4)₂ (**3b**) and (S_7)-**2b** as a catalyst in toluene for the allylic alkylation with C_2CO_3 and dimethyl malonate, a high enantioselectivity ranging between 94 and 97% ee was observed for 1-(substituted phenyl)-2-propenyl acetates **7a**-**c** (Scheme 3). The enantioselectivity was also

high for acetates 7d and 7e, which are substituted with 1-naphthyl and an alkyl substituent, respectively, at the α -position of the allyl acetate, to give the corresponding branch products 8 in greater than 90% ee.

To summarize, we succeeded in asymmetric allylic alkylation with high enantioselectivity in the rhodium-catalyzed reaction. The low concentration of the malonate nucleophile increased the enantioselectivity of the catalytic reaction by keeping the long lifetime of allyl-rhodium intermediates, which causes equilibration between the isomeric rhodium intermediates. A fine-tuning of the chiral rhodium catalysts by modification of the β -diketonato ligand enhanced the enantioselectivity up to 97% ee.

Acknowledgment. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture, Japan.

Supporting Information Available: Experimental procedures and spectroscopic and analytical data for the products. This material is available free of charge via the Internet at http://pubs.acs.org.

OL0343562

Org. Lett., Vol. 5, No. 10, 2003

⁽⁶⁾ To the best of our knowledge, there has been only one report describing the use of a chiral rhodium catalyst: Selvakumar, K.; Valentini, M.; Pregosin, P. S. *Organometallics* **1999**, *18*, 4591.

^{(7) (}a) Sprinz, J.; Helmchen, G. *Tetrahedron Lett.* **1993**, *34*, 1769. (b) Matt, P.; Pfaltz, A. *Angew. Chem., Int. Ed. Engl.* **1993**, *32*, 566. (c) Dawson, G. J.; Frost, C. G.; Williams, J. M. J.; Coote, S. J. *Tetrahedron Lett.* **1993**, *34*, 3149

⁽⁸⁾ For reviews: (a) Helmchen, G.; Pfaltz, A. Acc. Chem. Res. **2000**, 33, 336. (b) Helmchen, G. J. Organomet. Chem. **1999**, 576, 203. (c) Williams, J. M. J. Synlett **1996**, 705.

⁽⁹⁾ Generated by mixing Rh(acac)(C₂H₄)₂ with (*S*)-*i*-Pr-phox in THF. 31 P NMR (THF): δ 51.7 (d, J = 206.8 Hz). 11 H NMR (toluene- d_8): δ 0.59 (d, J = 6.8 Hz, 3H), 0.96 (d, J = 7.1 Hz, 3H), 1.83 (s, 3H), 2.25 (s, 3H), 3.38 (dsep, J = 3.0, 6.9 Hz, 1H), 3.86 (dd, J = 10.0, 8.6 Hz, 1H), 4.08 (dd, J = 8.6, 4.4 Hz, 1H), 5.58 (ddd, J = 10.0, 4.4, 3.0 Hz, 1H), 5.63 (s, 1H), 7.18 (t, J = 7.5 Hz, 1H), 7.25 (d, J = 7.5 Hz, 1H), 7.27-7.30 (m, 3H), 7.34-7.41 (m, 3H), 7.50 (t, J = 8.0 Hz, 1H), 8.01-8.07 (m, 2H), 8.10-8.17 (m, 3H).

⁽¹⁰⁾ 31 P NMR spectra of a mixture of **6** and **1** showed the generation of two major species in a ratio of 56:44. 31 P NMR (THF): δ 46.6 (d, J = 143.6 Hz) for the major isomer and δ 40.7 (d, J = 148.6 Hz) for the minor isomer.

⁽¹¹⁾ For a recent example of the study on the structure of the corresponding palladium complexes coordinated with the phosphino-oxazoline ligand and monosubstituted π -allyl ligands, see: Kollmar, M.; Steinhagen, H.; Janssen, J, P.; Goldefuss, B.; Makubivsjata, S. A.; Vázquez, J.; Rominger, F.; Helmchen, G. *Chem. Eur. J.* **2002**, *8*, 3103.

^{(12) (}a) Concept of extending the lifetime of a metal allyl intermediate using slow addition has been described (ref 1). (b) Effects of halide ions on the stereospecificity in rhodium-catalyzed allylic etherification have been reported: Evans, P. A.; Leahy, D. K. J. Am. Chem. Soc. 2002, 124, 7882.

⁽¹³⁾ Cesium carbonate has been used for the palladium-catalyzed asymmetric allylation forming a quaternary chiral center in nucleophiles: Trost, B. M.; Schroeder, G. M.; Kristensen, J. *Angew. Chem., Int. Ed.* **2002**, *41*, 3492.

^{(14) (}a) Ogasawara, M.; Yoshida, K.; Kamei, H.; Kato, K.; Uozumi, Y.; Hayashi, T. *Tetrahedron Asymmetry* **1998**, *9*, 1779. (b) Imai, Y.; Zhang, W.; Kida, T.; Nakatsuji, Y.; Ikeda, I. *Tetrahedron Lett.* **1998**, *39*, 4343. (c) Selvakumar, K.; Valentini, M.; Wörle, M.; Pregosin, P. S.; Albinati, A. *Organometallics* **1999**, *18*, 1207. (d) Ogasawara, M.; Yoshida, K.; Hayashi, T. *Heterocycles* **2000**, *52*, 195.